#6014. Symbolic models for infinite networks of control systems: A compositional approach

August 2026publication date
Proposal available till 08-06-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Analysis;
Computer Science Applications;
Control and Systems Engineering;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6014.1 Contract6014.2 Contract6014.3 Contract6014.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
This paper presents a compositional framework for the construction of symbolic models for a network composed of a countably infinite number of finite-dimensional discrete-time control subsystems. We refer to such a network as infinite network. The proposed approach is based on the notion of alternating simulation functions. This notion relates a concrete network to its symbolic model with guaranteed mismatch bounds between their output behaviors. We propose a compositional approach to construct a symbolic model for an infinite network, together with an alternating simulation function, by composing symbolic models and alternating simulation functions constructed for subsystems. Assuming that each subsystem is incrementally input-to-state stable and under some small-gain type conditions, we present an algorithm for orderly constructing local symbolic models with properly designed quantization parameters. In this way, the proposed compositional approach can provide us a guideline for constructing an overall symbolic model with any desired approximation accuracy. A compositional controller synthesis scheme is also provided to enforce safety properties on the infinite network in a decentralized fashion. The effectiveness of our result is illustrated through a road traffic network consisting of infinitely many road cells.
Keywords:
Compositionality; Infinite networks; Large-scale systems; Small-gain condition; Symbolic models

Contacts :
0