#5905. Particle swarm optimization with new initializing technique to solve global optimization problems

July 2026publication date
Proposal available till 03-06-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Geometry and Topology;
Theoretical Computer Science;
Software;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract5905.1 Contract5905.2 Contract5905.3 Contract5905.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Particle Swarm Optimization (PSO) is a well-known extensively utilized algorithm for a distinct type of optimization problem. In meta-heuristic algorithms, population initialization plays a vital role in solving the classical problems of optimization. The population’s initialization in meta-heuristic algorithms urges the convergence rate and diversity, besides this, it is remarkably beneficial for finding the efficient and effective optimal solution. In this study, we proposed an enhanced variation of the PSO algorithm by using a quasi-random sequence (QRS) for population initialization to improve the convergence rate and diversity. Furthermore, this study represents a new approach for population initialization by incorporating the torus sequence with PSO known as TO-PSO. The torus sequence belongs to the family of low discrepancy sequence and it is utilized in the proposed variant of PSO for the initialization of swarm. The proposed strategy of population’s initialization has been observed with the fifteen most famous unimodal and multimodal benchmark test problems.
Keywords:
Particle swarm optimization; Quasirandom sequence; Swarm intelligence; TO-PSO

Contacts :
0