#13028. Analysis of dual input buck-boost converter for solar PV integration with wireless electric vehicle charger

2022publication date
Proposal available till 15-12-2021
0 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Places in the authors’ list:

Abstract:
Investigation of on-board renewable solar PV and wireless EV charging station integration is studied in this paper. Integration of on-board solar PV power with EV charger power will reduce the stress on the grid without the need for extra ground for solar plant installation. A dual-input buck-boost converter (DIBBC) is used to integrate the two power sources and charge the EV battery. A small-signal model of the converter is used to design the controller for three switches of the DIBBC. The simulation model of the integrated solar PV system and wireless power transfer (WPT) system is designed for charging a battery of 120V/165Ah at 130V. The hardware prototype of the proposed EV battery charging system is designed for 1.5kW to verify the simulation results. WPT system is developed for circular spiral-shaped coils, which are series-series compensated for 85kHz resonance frequency. Solar PV is replaced by a solar simulator programmed to operate with the same specifications used in the simulation. Results and analysis of the DIBBC based charger with charging voltage 130V showed higher efficiency up to 92% when both the sources are supplying power to DIBBC. The proposed charging system gives better efficiency with higher source voltages and when the difference in power supplied by the two sources is less. Thus, higher voltage sources are beneficial for improving the efficiency of the integrated charging system. Further, loss analysis in major components of the converter is discussed.
Keywords:
Dual input buck-boost converter; Electric vehicle charging; Solar photovoltaic system; Wireless power transfer

Contacts :
0