#7177. Shell finite element formulation for geometrically nonlinear analysis of straight thin-walled pipes

January 2027publication date
Proposal available till 11-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Applied Mathematics;
Mechanical Engineering;
Mechanics of Materials;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2510 $1340 $1170 $1000 $
Contract7177.1 Contract7177.2 Contract7177.3 Contract7177.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
A family of new geometrically nonlinear finite elements is formulated for the simulation of the structural response in the elastic regime of straight pipes with circular cross-sections under various loading conditions. The first Piola–Kirchhoff stress tensor is employed within the principle of virtual work framework in conjunction with a total Lagrangian approach. The Green–Lagrange strain tensor is adopted to capture the finite deformation-small strain effects. The formulations are based on the kinematic assumptions of the thin shell theory and capture the follower effects due to pressure load. Three schemes are proposed to interpolate the displacement fields in the circumferential direction: (1) a Fourier series expansion, (2) a quartic spline interpolation, and (3) a mixed interpolation combining Fourier series and splines. The performance and prediction accuracy of the elements are assessed through comparisons with finite element models based on shell and elbow elements in ABAQUS under various loading conditions. The results demonstrate the ability of the elements to predict the displacement and stress fields. In particular, the element based on Fourier series interpolation is shown to provide accurate predictions.
Keywords:
Circular cylindrical pipe; First Piola–Kirchhoff stress tensor; Nonlinear analysis; Shell finite element formulation; Spline interpolation; Virtual work principle

Contacts :
0