#6947. Riemannian Manifold Hamiltonian Monte Carlo based subset simulation for reliability analysis in non-Gaussian space
December 2026 | publication date |
Proposal available till | 05-06-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Safety, Risk, Reliability and Quality;
Civil and Structural Engineering;
Building and Construction; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
This paper proposes a Riemannian Manifold Hamiltonian Monte Carlo based subset simulation (RMHMC-SS) method to overcome limitations of existing Monte Carlo approaches in solving reliability problems defined in highly-curved non-Gaussian spaces. RMHMC is based on the second-order geometric information of a probability space. Specifically, it generates an optimized path for Markov chain evolutions in a Hamiltonian constructed on the Riemannian manifold. Compared with the recently proposed Hamiltonian Monte Carlo based subset simulation (HMC-SS) approach, the RMHMC-SS approach shows better performance in handling highly-curved probability distributions. After a brief review of HMC-SS, the theory and implementation details of RMHMC-SS are presented. Finally, various reliability examples are studied to test and verify the proposed RMHMC-SS method.
Keywords:
Hamiltonian Monte Carlo; High-dimensional reliability; Non-Gaussian space; Riemannian manifold; Subset simulation
Contacts :