#6202. 3D printing of gelatin/chitosan biodegradable hybrid hydrogel: Critical issues due to the crosslinking reaction, degradation phenomena and process parameters

September 2026publication date
Proposal available till 13-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Computer Science Applications;
Biotechnology;
Biomedical Engineering;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6202.1 Contract6202.2 Contract6202.3 Contract6202.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Hydrogel materials are being investigated for application as scaffolds in tissue engineering owing to their many advantages, such as high water content, softness and flexibility similar to many soft tissues, tuneable physical, chemical, and biological properties, excellent biocompatibility and biodegradability, and extensive framework for cell proliferation and survival. During the past decade, because of the great versatility offered in terms of processing approach, material selection, and customization, 3D printing has become a leading technology used to fabricate hydrogel scaffolds. Furthermore, high reproducibility and unparalleled control over structural and compositional characteristics make additive manufacturing the preferred technology for the fabrication of biodegradable hydrogel scaffolds. However, the production time could become critical in relation to any crosslinking reactions and degradation that may occur in the hydrogel and make the printing process unstable. In this study an analysis of the critical issues due to the crosslinking reaction and degradation phenomena have been executed following a statistical approach. In particular, three different experimental campaign demonstrate how the printing process became instable due to the mentioned phenomena. Finally, a procedure was developed to print gelatine-based biocompatible hydrogels with chitosan and functionalized polyethylene glycol as a cross linker (G-PEG-CH).
Keywords:
3D printing; Additive manufacturing; Biodegradable hydrogel; Bioprinting; Design of experiment

Contacts :
0