#5981. Flight evaluation of simultaneous actuator/sensor fault reconstruction on a quadrotor minidrone
August 2026 | publication date |
Proposal available till | 07-06-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Control and Optimization;
Electrical and Electronic Engineering;
Computer Science Applications;
Control and Systems Engineering;
Human-Computer Interaction; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
In view of the increase in the number of Unmanned Aerial Vehicles (UAVs) in the commercial and private sectors, it is imperative to make sure that such systems are safe, and thus resilient to faults and failures. This paper considers the numerical design and practical implementation of a linear parameter-varying (LPV) sliding mode observer for Fault Detection and Diagnosis (FDD) of a quadrotor minidrone. Starting from a nonlinear model of the minidrone, an LPV model is extracted for design, and the observer synthesis procedure, using Linear Matrix Inequalities (LMI), is detailed. Simulations of the observer FDD show good performance. The observer is then implemented on a Parrot® Rolling Spider minidrone and a series of flight tests is performed to assess the FDD capabilities in real time using its on-board processing power.
Keywords:
+
Contacts :