#5918. Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry
July 2026 | publication date |
Proposal available till | 19-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Horticulture;
Agronomy and Crop Science;
Forestry;
Computer Science Applications; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Counting crop seedlings is a time-demanding activity involved in diverse agricultural practices like plant cultivating, experimental trials, plant breeding procedures, and weed control. Unmanned Aerial Vehicles (UAVs) carrying RGB cameras are novel tools for automatic field mapping, and the analysis of UAV images by deep learning methods can provide relevant agronomic information. UAV-based camera systems and a deep learning image analysis pipeline are implemented for a fully automated plant counting in sugar beet, maize, and strawberry fields in the present study. Five locations were monitored at different growth stages, and the crop number per plot was automatically predicted by using a fully convolutional network (FCN) pipeline. Our FCN-based approach is a single model for jointly determining both the exact stem location of crop and weed plants and a pixel-wise plant classification considering crop, weed, and soil. To determinate the approach performance, predicted crop counting was compared to visually assessed ground truth data.
Keywords:
Deep learning; FCN; Growth stage; Intra-row distance; Plant segmentation; Sugar beet; Time-series; UAV
Contacts :