#4595. Variational Bayes approximation of factor stochastic volatility models
August 2026 | publication date |
Proposal available till | 19-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Business and International Management; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
More details about the manuscript: Science Citation Index Expanded OR/AND Social Sciences Citation Index
Abstract:
Estimation and prediction in high dimensional multivariate factor stochastic volatility models is an important and active research area, because such models allow a parsimonious representation of multivariate stochastic volatility. Bayesian inference for factor stochastic volatility models is usually done by Markov chain Monte Carlo methods (often by particle Markov chain Monte Carlo methods), which are usually slow for high dimensional or long time series because of the large number of parameters and latent states involved. Our article makes two contributions. The first is to propose a fast and accurate variational Bayes methods to approximate the posterior distribution of the states and parameters in factor stochastic volatility models. The second is to extend this batch methodology to develop fast sequential variational updates for prediction as new observations arrive. The methods are applied to simulated and real datasets, and shown to produce good approximate inference.
Keywords:
Bayesian inference; Prediction; Sequential variational inference; State space model; Stochastic gradient
Contacts :