#7129. Equations of Motion for the Vertical Rigid-Body Rotor: Linear and Nonlinear Cases
November 2026 | publication date |
Proposal available till | 11-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Aerospace Engineering;
Mechanical Engineering;
Mechanics of Materials; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Centuries ago, the prolific mathematician Leonhard Euler (1707–1783) wrote down the equations of motion (EOM) for the heavy symmetrical top with one point fixed. The resulting set of equations turned out to be nonlinear and had a limited number of closed-form solutions. Today, tools such as transfer matrix and finite elements enable the calculation of the rotordynamic properties for rotor-bearing systems. Some of these tools rely on the “linearized” version of the EOM to calculate the eigenvalues, unbalance response, or transients in these systems. In fact, industry standards mandate that rotors be precisely balanced to have safe operational characteristics. However, in some cases, the nonlinear aspect of the EOM should be considered. The purpose of this chapter is to show examples of how the linear vs. nonlinear formulations differ. This chapter also shows how excessive unbalance is capable of dramatically altering the behavior of the system and can produce chaotic motions associated with the “jump” phenomenon.
Keywords:
Equations of motion; Generalized forces; Nonlinear; Rigid body; Rotordynamics
Contacts :