#9196. Reclassifying stroke lesion anatomy
November 2026 | publication date |
Proposal available till | 14-05-2025 |
4 total number of authors per manuscript | 6020 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Experimental and Cognitive Psychology;
Neuropsychology and Physiological Psychology;
Cognitive Neuroscience; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.
Keywords:
Brain imaging; Dimensionality reduction; Lesion anatomy; Lesion–deficit prediction; Stroke
Contacts :