#7572. Learn to grasp unknown objects in robotic manipulation
October 2026 | publication date |
Proposal available till | 20-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Computational Mechanics;
Engineering (miscellaneous);
Mechanical Engineering;
Artificial Intelligence; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Grasping unfamiliar objects (unknown during training) based on limited prior knowledge is a challenging task in robotic manipulation. Recent solutions typically require predefined information of target objects, task-specific training data, or a huge experience data with training time-consuming to achieve usable generalization ability. This paper introduces a robotic grasping strategy based on the model-free deep reinforcement learning, named Deep Reinforcement Grasp Policy. The developed system demands minimal training time and limited simple objects in simulation and generalizes efficiently on novel objects in real-world scenario.
Keywords:
Autonomous system; Convolutional neural network; Deep reinforcement learning; Robotic manipulation; Visual servoing
Contacts :