#7506. Global Solutions of the Two-Dimensional Kuramoto–Sivashinsky Equation with a Linearly Growing Mode in Each Direction
October 2026 | publication date |
Proposal available till | 19-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Applied Mathematics;
Engineering (all);
Modeling and Simulation; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
We consider the Kuramoto–Sivashinsky equation in two space dimensions. We establish the first proof of global existence of solutions in the presence of a linearly growing mode in both spatial directions for sufficiently small data. We develop a new method to this end, categorizing wavenumbers as low (linearly growing modes), intermediate (linearly decaying modes that serve as energy sinks for the low modes), and high (strongly linearly decaying modes). The low and intermediate modes are controlled by means of a Lyapunov function, while the high modes are controlled with operator estimates in function spaces based on the Wiener algebra.
Keywords:
Dynamics; Global existence; Kuramoto–Sivashinsky; Lyapunov function; Parabolic partial differential equations
Contacts :