#7372. Weighted truncated nuclear norm regularization for low-rank quaternion matrix completion
October 2026 | publication date |
Proposal available till | 31-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Media Technology;
Electrical and Electronic Engineering;
Signal Processing;
Computer Vision and Pattern Recognition; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
In recent years, quaternion matrix completion (QMC) based on low-rank regularization has been gradually used in image processing. Unlike low-rank matrix completion (LRMC) which handles RGB images by recovering each color channel separately, QMC models retain the connection of three channels and process them as a whole. Most of the existing quaternion-based methods formulate low-rank QMC (LRQMC) as a quaternion nuclear norm (a convex relaxation of the rank) minimization problem. The main limitation of these approaches is that they minimize the singular values simultaneously such that cannot approximate low-rank attributes efficiently.
Keywords:
Low-rank; Quaternion matrix completion; Quaternion truncated nuclear norm; Weights
Contacts :