#7171. A micromechanical model of elastic-damage properties of innovative pothole patching materials featuring high-toughness, low-viscosity nanomolecular resin

January 2027publication date
Proposal available till 11-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Computational Mechanics;
Mechanical Engineering;
Mechanics of Materials;
Materials Science (all);
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract7171.1 Contract7171.2 Contract7171.3 Contract7171.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Innovative pothole patching materials reinforced with a high-toughness, low-viscosity nanomolecular resin, dicyclopentadiene (DCPD, C10H12), have been experimentally proven to be effective in repairing cracked asphalt pavements and can significantly enhance their durability and service life. In this paper, a three-dimensional micromechanical framework is proposed based on the micromechanics and continuum damage mechanics to predict the effective elastic-damage behaviors of this innovative pothole patching material under the splitting tension test (ASTM D6931). In this micromechanical model, irregular coarse aggregates are approximated and simulated by randomly allocated multi-layer-coated spherical particles in certain representative sizes. Fine aggregates, asphalt binder (PG64-10), cured DCPD (p-DCPD), and air voids are formulated into an isotropic elastic asphalt mastic matrix based on the multilevel homogenization approach. The theoretical micromechanical elastic-damage predictions are then systemically compared with properly designed laboratory experiments as well as three-dimensional finite elements numerical simulations for the innovative pothole patching materials.
Keywords:
elastic-damage evolution; Innovative pothole patching materials; multilayer-coated particle; multilevel homogenization method; nanomolecular DCPD resin; splitting tensile strength; three-dimensional micromechanical elastic-damage model

Contacts :
0