#7105. A study on the high pressure EGR transport and application to the dispersion among cylinders in automotive engines
December 2026 | publication date |
Proposal available till | 10-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Ocean Engineering;
Aerospace Engineering;
Mechanical Engineering;
Automotive Engineering; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
The objective of this study is to explore the limits of a one-dimensional model to predict the movement and mixing of the air and exhaust gases recirculation (EGR) flows in compact intake manifolds of recent automotive engines. In particular, the high pressure EGR loop configuration is evaluated in this study from the perspective of the EGR dispersion among cylinders. The experimental work includes the use of a fast CO2 tracking system that provides crank-angle resolved results in six locations of the intake manifold together with the acquisition of the time-averaged CO2 concentration in all the intake pipes (eight locations) to evaluate the EGR dispersion empirically. A specific system was developed to inject the EGR in three locations of the intake manifold in a flexible way to modify the dispersion. Up to 29 engine running conditions defined by engine speed, engine torque and EGR rate, spanning the entire engine map, including full load operation, were evaluated. A one-dimensional engine model was built to detect the limits in reproducing the EGR transport in the intake manifold and quantify the accuracy when predicting the dispersion among cylinders. The study concludes that the predicted EGR rate in the cylinders may differ up to 75% from the experimental measurement at low engine averaged EGR rate. The model prediction improves to differences lower than 40% in EGR rate per cylinder if the engine operating points with an EGR rate lower than 10% are excluded. In this situation, 80% of the predicted in-cylinder EGR rates have differences lower than 25% when compared to experiments.
Keywords:
1D model; CO2 tracking; dispersion; EGR; engine; intake manifold
Contacts :