#6926. Determination of kinetic constants by using transient temperature data from continuous stirred tank reactors

January 2027publication date
Proposal available till 30-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Industrial and Manufacturing Engineering;
Chemical Engineering (all);
Chemistry (all);
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6926.1 Contract6926.2 Contract6926.3 Contract6926.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Mathematical modelling of transient states of continuous stirred tank reactors was considered for the case of homogeneous liquid-phase reactions. A simple and very precise kinetic measurement strategy was proposed: registration of the reactor temperature during the start-up of the reaction process. The dynamic reactor model consisted of mass and energy balances written in dimensionless forms to enable general conclusions and easy computer implementation. Model simulations were carried out by using a numerical solver for stiff differential equations and a reaction invariant was revealed by theoretical analysis. A series of transient laboratory-scale experiments for a strongly exothermic reaction, a reaction between sodium thiosulphate and hydrogen peroxide was conducted and the kinetic parameters, the pre-exponential factors and activation energies were estimated. The data fitting was further improved by incorporating the decomposition of hydrogen peroxide as a side reaction. The estimated kinetic parameters were investigated further by sensitivity analysis and Markov-Chain-Monte-Carlo-Method (MCMC) to confirm their reliability. The proposed method is applicable for relatively simple systems with a measurable heat effect. For complex multireaction systems the method should be completed with chemical analysis.
Keywords:
Adiabatic CSTR; Homogeneous reactions; Rate constants; Thermal effect

Contacts :
0