#6871. Programmable multistability for 3D printed reinforced multifunctional composites with reversible shape change

December 2026publication date
Proposal available till 30-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Engineering (all);
Ceramics and Composites;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6871.1 Contract6871.2 Contract6871.3 Contract6871.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
4D printing empowers 3D printed structures made of hydrogels, liquid crystals or shape memory polymers, with reversible morphing capabilities in response to an external stimulus. To apply reversible shape-change to stiff lightweight materials such as microfiber reinforced polymers, we developed a composite ink that can be printed using direct-ink-writing (DIW), and that exhibits multistability around its glass transition temperature. After curing at room temperature, the flat print thermally morphs into a predefined shape upon heating at an actuation temperature and cooling down. The sample can then reversibly snap between multiple stable shapes when heated above its glass transition temperature thanks to pre-stress-induced multistability. The key that allows thermal morphing and pre-stress multistability is the microstructuring of the 3D printed composites by shear-induced alignment of reinforcing microfibers. This alignment leads to local anisotropy in thermomechanical properties and the build-up of pre-stresses. Furthermore, the ink composition can be tuned to generate shape-dependant reversible functional properties, such as electrical conductivity. Based on finite element modelling and experimental results, the method proposed here can be used for variety of compositions and designs, for applications where stiffness, reconfigurability and shape-dependent functionalities can be exploited.
Keywords:
A. Short-fiber composites; B. Multifunctional properties C. Finite element analysis; B. Shape memory behaviour; E. 3D printing; Microstructure

Contacts :
0