#6865. Case history on failure of geosynthetics-reinforced soil bridge approach retaining walls

January 2027publication date
Proposal available till 30-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Geotechnical Engineering and Engineering Geology;
Civil and Structural Engineering;
Materials Science (all);
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6865.1 Contract6865.2 Contract6865.3 Contract6865.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Six geosynthetic-reinforced soil (GRS) retaining walls supporting bridge approach roads of an overpass bridge in China exhibited a series of structural problems after 18 years of service. Field investigations demonstrated that the major structural problems consist of excessive lateral facing displacement, settlement and damage of facing panels, and pavement cracks above the GRS retaining walls. The structural problems were mainly caused by inadequate backfill compaction behind the facing, rain water infiltration, the settlement of foundation soil, and reinforcement ageing. Among the six GRS walls, a 22-m-long section collapsed after mild rain in July 20XX, and the failure surface in the collapsed zone was mainly located 0.5–0.9 m away from the back of facing panels along the wall height. The field investigation found that external water filtration into the backfill behind the facing panels, and the breakage of connection between reinforcement and facing panels were the main causes of the failure. The connection breakage resulted from the ageing of PP reinforcement strips, and the critical issue of PP reinforcement ageing in complex backfill environment was pinpointed. Remedial measures of the failed section and reinforcing techniques of the remaining GRS walls were briefly presented in the end.
Keywords:
Collapse of facing panels; Geosynthetics; GRS retaining Walls; Reinforcement ageing; Structural problem

Contacts :
0