#6769. A review of laser ablation and dicing of Si wafers

November 2026publication date
Proposal available till 25-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Engineering (all);
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6769.1 Contract6769.2 Contract6769.3 Contract6769.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Over the last decade, lasers have been gradually employed for Si wafer dicing to replace blade dicing. Laser dicing has the potential to replace blade dicing as the future generation ultrathin wafer singulation method as it enables higher cutting speed, lower damage, and smaller kerf width but various technical challenges still remain to be resolved. In this article, laser ablation and dicing of Si wafers are reviewed in terms of the physics of laser-material interaction based on nanosecond, picosecond, and femtosecond pulse durations. The effects of various laser settings, dicing process parameters, and material factors on ablation rate, ablation precision and quality, and die fracture strength are discussed in detail. With the increasing usage of Cu stabilization layer on the backside of ultrathin Si wafers, we also review laser-material interaction in Cu and elaborate on recent findings on the effects of laser dicing through Si and Cu simultaneously on the microstructural and fracture strength properties of the die. Various approaches to improve the ablation rate, ablation quality, and die fracture strength are discussed.
Keywords:
Copper stabilization layer; die fracture strength; Laser ablation mechanism; Laser ablation quality; Laser ablation rate; Laser dicing; Laser-material interaction; Silicon wafer

Contacts :
0