#6737. Dynamics of tethered membranes in inviscid flow
September 2026 | publication date |
Proposal available till | 23-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Mechanical Engineering; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
We investigate the dynamics of membranes that are held by freely-rotating rigid tethers in fluid flows. The tethered boundary condition allows periodic and chaotic oscillatory motions for certain parameter values. We characterize the oscillations in terms of deflection amplitudes, dominant periods, and numbers of local extrema of deflection along the membranes across the parameter space of membrane mass density, stretching modulus, pretension, and tether length. We determine the region of instability and the small-amplitude behavior by solving a nonlinear eigenvalue problem. We also consider an infinite periodic membrane model, which yields a regular eigenvalue problem, analytical results, and asymptotic scaling laws. We find qualitative similarities among all three models in terms of the oscillation frequencies and membrane shapes at small and large values of membrane mass, pretension, and tether length/stiffness.
Keywords:
Extensible membranes; Flow–structure interactions; Nonlinear instability
Contacts :