#6698. Inhibition of Cusp magnetic field on stray-crystal formation in platform region during directionally solidified single-crystal superalloy
September 2026 | publication date |
Proposal available till | 03-06-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Metals and Alloys;
Polymers and Plastics;
Mechanical Engineering;
Mechanics of Materials;
Materials Chemistry;
Ceramics and Composites; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
The stray crystal in the platform region is one of the common main defects in single-crystal superalloy blades. The simple and effective method to eliminate this defect is urgent to be explored. This work found that the Cusp magnetic field can effectively inhibit the stray-crystal formation in the platform. The tendency of stray-crystal formation decreases as the magnetic-field strength increases at a certain withdrawal rate and temperature-gradient. The suppressing effect decreases as the withdrawal rate or the temperature-gradient increases. Finally, the inhibiting mechanism on the stray-crystal formation from the Cusp magnetic field is proposed based on the experiments and the numerical simulation. The magnetic-field application strengthens the flow velocity and changes the flow structure near the liquid-solid interface, and further reduces the radial temperature difference. Accordingly, the secondary dendrites in the heat-conduction undercooled zone expands towards the corner in a faster speed, which reduces the stray-crystal formation in the platform corner. This study provides an effective and simple method for decreasing the stray-crystal formation during the preparation of single-crystal with platform region.
Keywords:
Cusp magnetic field; Platform region; Single-crystal superalloy; Stray crystals
Contacts :