#6445. Mineral transformation during rapid heating and cooling of Zhundong coal ash

October 2026publication date
Proposal available till 25-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Organic Chemistry;
Chemical Engineering (all);
Energy Engineering and Power Technology;
Fuel Technology;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6445.1 Contract6445.2 Contract6445.3 Contract6445.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Zhundong (ZD) coalfield has a large number of coal reserves. However, the severe fouling and slagging problems that occurred in ZD coal-fired utility boilers have seriously hindered the large-scale utilization of ZD coal. Deep understanding of the mineral transformation of ZD coal during combustion and its impact on fouling and slagging can provide technical support for fouling and slagging prevention in utility boilers. In this paper, a novel temperature and atmosphere controlling method was proposed to study ash deposition. Wucaiwan (WCW) coal ash samples in different atmospheres and temperatures were collected efficiently by the established single thermocouple high-temperature online microscope observation test rig. The influence of rapid heating and cooling on the mineral transformation of WCW coal ash samples was systematically investigated using XRD and SEM-EDS, respectively. The effects of SO2 in the flue gas on the mineral transformation and the sulphates generation of the coal ash were analysed by comparing the experimental results in oxidizing atmosphere and simulated flue gas atmosphere.
Keywords:
Mineral transformation; Rapid heating and cooling of ash; Sulfation; Zhundong coal

Contacts :
0