#6363. Clustering ensemble via structured hypergraph learning
November 2026 | publication date |
Proposal available till | 03-06-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Hardware and Architecture;
Signal Processing;
Information Systems;
Software; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Clustering ensemble integrates multiple base clustering results to obtain a consensus result and thus improves the stability and robustness of the single clustering method. Since it is natural to use a hypergraph to represent the multiple base clustering results, where instances are represented by nodes and base clusters are represented by hyperedges, some hypergraph based clustering ensemble methods are proposed. Conventional hypergraph based methods obtain the final consensus result by partitioning a pre-defined static hypergraph. However, since base clusters may be imperfect due to the unreliability of base clustering methods, the pre-defined hypergraph constructed from the base clusters is also unreliable. Therefore, directly obtaining the final clustering result by partitioning the unreliable hypergraph is inappropriate. To tackle this problem, in this paper, we propose a clustering ensemble method via structured hypergraph learning, i.e., instead of being constructed directly, the hypergraph is dynamically learned from base results, which will be more reliable. Moreover, when dynamically learning the hypergraph, we enforce it to have a clear clustering structure, which will be more appropriate for clustering tasks, and thus we do not need to perform any uncertain postprocessing, such as hypergraph partitioning.
Keywords:
Clustering ensemble; Ensemble learning; Hypergraph graph learning
Contacts :