#6318. ExactSim: benchmarking single-source SimRank algorithms with high-precision ground truths
September 2026 | publication date |
Proposal available till | 20-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Information Systems;
Hardware and Architecture; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
SimRank is a popular measurement for evaluating the node-to-node similarities based on the graph topology. In recent years, single-source and top-k SimRank queries have received increasing attention due to their applications in web mining, social network analysis, and spam detection. However, a fundamental obstacle in studying SimRank has been the lack of ground truths. The only exact algorithm, Power Method, is computationally infeasible on graphs with more than 10 6 nodes. Consequently, no existing work has evaluated the actual accuracy of various single-source and top-k SimRank algorithms on large real-world graphs. In this paper, we present ExactSim, the first algorithm that computes the exact single-source and top-k SimRank results on large graphs. This algorithm produces ground truths with precision up to 7 decimal places with high probability. With the ground truths computed by ExactSim, we present the first experimental study of the accuracy/cost trade-offs of existing approximate SimRank algorithms on large real-world graphs and synthetic graphs. Finally, we use the ground truths to exploit various properties of SimRank distributions on large graphs.
Keywords:
Benchmarks; Exact computation; Ground truths; Power-law; SimRank; Single-source
Contacts :