#6301. Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters

September 2026publication date
Proposal available till 20-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Nuclear and High Energy Physics;
Computer Science (miscellaneous);
Software;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6301.1 Contract6301.2 Contract6301.3 Contract6301.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
The ATLAS experiment at the Large Hadron Collider (LHC) is operated at CERN and measures proton–proton collisions at multi-TeV energies with a repetition frequency of 40 MHz. Within the phase-II upgrade of the LHC, the readout electronics of the liquid-argon (LAr) calorimeters of ATLAS are being prepared for high luminosity operation expecting a pileup of up to 200 simultaneous proton–proton interactions. Moreover, the calorimeter signals of up to 25 subsequent collisions are overlapping, which increases the difficulty of energy reconstruction by the calorimeter detector. Real-time processing of digitized pulses sampled at 40 MHz is performed using field-programmable gate arrays (FPGAs). To cope with the signal pileup, new machine learning approaches are explored: convolutional and recurrent neural networks outperform the optimal signal filter currently used, both in assignment of the reconstructed energy to the correct proton bunch crossing and in energy resolution. The improvements concern in particular energies derived from overlapping pulses. Since the implementation of the neural networks targets an FPGA, the number of parameters and the mathematical operations need to be well controlled. The trained neural network structures are converted into FPGA firmware using automated implementations in hardware description language and high-level synthesis tools. Very good agreement between neural network implementations in FPGA and software based calculations is observed.
Keywords:
Convolutional neural network; FPGA; High-energy physics; Machine learning; Real-time processing; Recurrent neural network

Contacts :
0