#6270. The Networked Context of COVID-19 Misinformation: Informational Homogeneity on YouTube at the Beginning of the Pandemic
September 2026 | publication date |
Proposal available till | 20-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Communication;
Computer Networks and Communications;
Information Systems; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
More details about the manuscript: Science Citation Index Expanded or/and Social Sciences Citation Index
Abstract:
During the coronavirus disease 20XX (COVID-19) pandemic, the video-sharing platform YouTube has been serving as an essential instrument to widely distribute news related to the global public health crisis and to allow users to discuss the news with each other in the comment sections. Along with these enhanced opportunities of technology-based communication, there is an overabundance of information and, in many cases, misinformation about current events. In times of a pandemic, the spread of misinformation can have direct detrimental effects, potentially influencing citizens behavioral decisions (e.g., to not socially distance) and putting collective health at risk. Misinformation could be especially harmful if it is distributed in isolated news cocoons that homogeneously provide misinformation in the absence of corrections or mere accurate information. The present study analyzes data gathered at the beginning of the pandemic (January–March 20XX) and focuses on the network structure of YouTube videos and their comments to understand the level of informational homogeneity associated with misinformation on COVID-19 and its evolution over time. This study combined machine learning and network analytic approaches.
Keywords:
COVID-19; Deep Learning, Social Media; Homogeneity; Infodemic; Misinformation; Network Analysis; YouTube
Contacts :