#6068. High-speed nanoLEDs for chip-scale communication

October 2026publication date
Proposal available till 22-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Applied Mathematics;
Electrical and Electronic Engineering;
Computer Networks and Communications;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6068.1 Contract6068.2 Contract6068.3 Contract6068.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Fast and efficient light generation and transport are at the heart of modern on-chip optical communication and information processing technologies. Next generation on-chip light sources must have a high modulation bandwidth and low energy consumption while maintaining a small footprint to be competitive. Enabled by metal-cladded nanocavities, fast subwavelength light emitters in the form of both lasers and LEDs have been analytically or experimentally demonstrated. From the modulation bandwidth perspective, nanolasers are ultimately limited by gain compression at high injection currents. From the energy efficiency perspective, nanolasers are inefficient due to the required high injection current to compensate for the losses in order to reach the lasing threshold. In contrast, nanoLEDs can simultaneously have Purcell effect enhanced speed, high energy efficiency, and output power that is above the thermal noise limit. This brief review aims to bolster, in a comparative approach, rationales of why nanoLEDs are a competitive alternative to nanolasers as light sources in chip-scale optical communication systems.
Keywords:
Bandwidth; High speed optical interconnect; Metallic nanocavity; Nanolasers; NanoLEDs; Purcell factor; Threshold

Contacts :
0