#6032. The impact of a reduced training subspace on the prediction accuracy of neural networks for hygrothermal predictions
July 2026 | publication date |
Proposal available till | 28-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Architecture;
Modeling and Simulation;
Building and Construction;
Computer Science Applications; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Performing a probabilistic assessment of a building component can easily become computationally inhibitive. To solve this issue, the hygrothermal model can be replaced by a metamodel, which mimics the original model with a strongly reduced calculation time. In this paper, convolutional neural networks are used to predict hygrothermal performance. Because neural networks do not extrapolate well outside their training subspace, it is important to select the training data wisely so that the network can be used to predict for a wide variety of cases, while keeping training time as low as possible. The impact of a reduced training subspace is investigated by training a network on a limited number of wall types or exterior climates and evaluate its prediction accuracy for different wall geometries or other climates.
Keywords:
convolutional neural networks; hygrothermal assessment; Metamodelling; probabilistic assessment; time series modelling
Contacts :