#5887. Overlapped Speech Detection and speaker counting using distant microphone arrays
August 2026 | publication date |
Proposal available till | 03-06-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Theoretical Computer Science;
Human-Computer Interaction;
Software; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
More details about the manuscript: Science Citation Index Expanded or/and Social Sciences Citation Index
Abstract:
We study the problem of detecting and counting simultaneous, overlapping speakers in a multichannel, distant-microphone scenario. Focusing on a supervised learning approach, we treat Voice Activity Detection (VAD), Overlapped Speech Detection (OSD), joint VAD and OSD (VAD+OSD) and speaker counting in a unified way, as instances of a general Overlapped Speech Detection and Counting (OSDC) multi-class supervised learning problem. We consider a Temporal Convolutional Network (TCN) and a Transformer based architecture for this task, and compare them with previously proposed state-of-the art methods based on Recurrent Neural Networks (RNN) or hybrid Convolutional-Recurrent Neural Networks (CRNN). In addition, we propose ways of exploiting multichannel input by means of early or late fusion of single-channel features with spatial features extracted from one or more microphone pairs. We conduct an extensive experimental evaluation on the AMI and CHiME-6 datasets and on a purposely made multichannel synthetic dataset.
Keywords:
Distant microphones; Overlapped Speech Detection; Spatial features; Speaker counting; Voice activity detection
Contacts :