#5788. Threat detection in Internet of Things using Cuckoo search Chicken Swarm optimisation algorithm
July 2026 | publication date |
Proposal available till | 12-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Theoretical Computer Science;
Artificial Intelligence;
Software; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Smart devices and people existing on the internet are connected to smart objects or things in the Internet of Things (IoT) technology. To protect the user information, it is required to detect malicious actions in the IoT environment. Even though different threat detection methods are introduced in the IoT technology, detecting malicious activity is still a significant challenge in the communication network. Hence, in this research work, an effective Cuckoo Search Chicken Swarm (CSCS) optimisation algorithm is proposed to detect the malicious threat in the network effectively. At first, the user activity information is simulated from the IoT network and stored in the user activity log. The user activity log file is forwarded to the feature extraction module, where the features, like logon, device, file, email, and Hypertext Transfer Protocol (HTTP) are extracted using the window length. For each user, the features are extracted with respect to the time stamp. Then, the dynamic feature index is constructed, and the threat detection is performed using the deep Long Short-Term Memory (LSTM) classifier, which is trained using the proposed CSCS algorithm. The proposed CSCS algorithm is designed by integrating the Cuckoo Search (CS) algorithm and the Chicken Swarm Optimisation (CSO) algorithm.
Keywords:
Chicken Swarm; Cuckoo search; key management; Long Short Term Memory; User activity logs
Contacts :