#5750. A review of 3D human pose estimation algorithms for markerless motion capture

July 2026publication date
Proposal available till 11-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Signal Processing;
Software;
Computer Vision and Pattern Recognition;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract5750.1 Contract5750.2 Contract5750.3 Contract5750.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Human pose estimation is a very active research field, stimulated by its important applications in robotics, entertainment or health and sports sciences, among others. Advances in convolutional networks triggered noticeable improvements in 2D pose estimation, leading modern 3D markerless motion capture techniques to an average error per joint of 20 mm. However, with the proliferation of methods, it is becoming increasingly difficult to make an informed choice. Here, we review the leading human pose estimation methods of the past five years, focusing on metrics, benchmarks and method structures. We propose a taxonomy based on accuracy, speed and robustness that we use to classify de methods and derive directions for future research.
Keywords:
3D human pose estimation; Convolutional neural networks; Survey

Contacts :
0