#5668. Domain-based Latent Personal Analysis and its use for impersonation detection in social media
August 2026 | publication date |
Proposal available till | 23-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Information Science |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
More details about the manuscript: Science Citation Index Expanded or/and Social Sciences Citation Index
Abstract:
Zipf’s law defines an inverse proportion between a word’s ranking in a given corpus and its frequency in it, roughly dividing the vocabulary into frequent words and infrequent ones. Here, we stipulate that within a domain an author’s signature can be derived from, in loose terms, the author’s missing popular words and frequently used infrequent words. We devise a method, termed Latent Personal Analysis (LPA), for finding domain-based attributes for entities in a domain: their distance from the domain and their signature, which determines how they most differ from a domain. We identify the most suitable distance metric for the method among several and construct the distances and personal signatures for authors, the domain’s entities. The signature consists of both over-used terms (compared to the average) and missing popular terms. We validate the correctness and power of the signatures in identifying users and set existence conditions. We test LPA in several domains, both textual and non-textual. We then demonstrate the use of the method in explainable authorship attribution: we define algorithms that utilize LPA to identify two types of impersonation in social media: (1) authors with sockpuppets (multiple) accounts and (2) front-users accounts, operated by several authors. We validate the algorithms and employ them over a large-scale dataset obtained from a social media site with over 4000 users. We corroborate these results using temporal rate analysis. LPA can further be used to devise personal attributes in a wide range of scientific domains in which the constituents have a long-tail distribution of elements.
Keywords:
Authorship attribution; Front-users; Impersonation; Latent Personal Analysis (LPA); Sockpuppets; Zipf
Contacts :