#5595. Fast and Accurate Normal Estimation for Point Clouds Via Patch Stitching

August 2026publication date
Proposal available till 21-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Industrial and Manufacturing Engineering;
Computer Graphics and Computer-Aided Design;
Computer Science Applications;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract5595.1 Contract5595.2 Contract5595.3 Contract5595.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
This paper presents an effective normal estimation method adopting multi-patch stitching for an unstructured point cloud. The majority of learning-based approaches encode a local patch around each point of a whole model and estimate the normals in a point-by-point manner. In contrast, we suggest a more efficient pipeline, in which we introduce a patch-level normal estimation architecture to process a series of overlapping patches. Additionally, a multi-normal selection method based on weights, dubbed as multi-patch stitching, integrates the normals from the overlapping patches. To reduce the adverse effects of sharp corners or noise in a patch, we introduce an adaptive local feature aggregation layer to focus on an anisotropic neighborhood. We then utilize a multi-branch planar experts module to break the mutual influence between underlying piecewise surfaces in a patch. At the stitching stage, we use the learned weights of multi-branch planar experts and distance weights between points to select the best normal from the overlapping parts. Furthermore, we put forward constructing a sparse matrix representation to reduce large-scale retrieval overheads for the loop iterations dramatically.
Keywords:
Adaptive local feature aggregation; Multi-branch planar experts; Normal estimation; Patch stitching; Point cloud processing

Contacts :
0