#5571. Self-supervised CT super-resolution with hybrid model
July 2026 | publication date |
Proposal available till | 21-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Health Informatics;
Computer Science Applications; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Software-based methods can improve CT spatial resolution without changing the hardware of the scanner or increasing the radiation dose to the object. In this work, we aim to develop a deep learning (DL) based CT super-resolution (SR) method that can reconstruct low-resolution (LR) sinograms into high-resolution (HR) CT images. We mathematically analyzed imaging processes in the CT SR imaging problem and synergistically integrated the SR model in the sinogram domain and the deblur model in the image domain into a hybrid model (SADIR). SADIR incorporates the CT domain knowledge and is unrolled into a DL network (SADIR-Net). The SADIR-Net is a self-supervised network, which can be trained and tested with a single sinogram. SADIR-Net was evaluated through SR CT imaging of a Catphan700 physical phantom and a real porcine phantom, and its performance was compared to the other state-of-the-art (SotA) DL-based CT SR methods.
Keywords:
Computed tomography; Hybrid model; Self-supervised; Super resolution
Contacts :