#5570. Automated detection and grading of Invasive Ductal Carcinoma breast cancer using ensemble of deep learning models
July 2026 | publication date |
Proposal available till | 21-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Health Informatics;
Computer Science Applications; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Invasive ductal carcinoma (IDC) breast cancer is a significant health concern for women all around the world and early detection of the disease may increase the survival rate in patients. Therefore, Computer-Aided Diagnosis (CAD) based systems can assist pathologists to detect the disease early. In this study, we present an ensemble model to detect IDC using DenseNet-121 and DenseNet-169 followed by test time augmentation (TTA). The model achieved a balanced accuracy of 92.70% and an F1-score of 95.70% outperforming the current state-of-the-art. Comparative analysis against various pre-trained deep learning models and preprocessing methods have been carried out. Qualitative analysis has also been conducted on the test dataset. After the detection of IDC breast cancer, it is important to grade it for further treatment. In our study, we also propose an ensemble model for the grading of IDC using the pre-trained DenseNet-121, DenseNet-201, ResNet-101v2, and ResNet-50 architectures. The model is inferred from two validation cohorts.
Keywords:
Breast cancer; Deep learning; Invasive ductal carcinoma
Contacts :