#5557. Melanoma classification using light-Fields with morlet scattering transform and CNN: Surface depth as a valuable tool to increase detection rate
July 2026 | publication date |
Proposal available till | 21-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Radiology, Nuclear Medicine and Imaging;
Health Informatics;
Computer Graphics and Computer-Aided Design;
Radiological and Ultrasound Technology;
Computer Vision and Pattern Recognition; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Medical image classification through learning-based approaches has been increasingly used, namely in the discrimination of melanoma. However, for skin lesion classification in general, such methods commonly rely on dermoscopic or other 2D-macro RGB images. This work proposes to exploit beyond conventional 2D image characteristics, by considering a third dimension (depth) that characterises the skin surface rugosity, which can be obtained from light-field images, such as those available in the SKINL2 dataset. To achieve this goal, a processing pipeline was deployed using a morlet scattering transform and a CNN model, allowing to perform a comparison between using 2D information, only 3D information, or both.
Keywords:
Classification; Light-fields; Skin lesion; Wavelet scattering
Contacts :