#5513. Multi-GPU implementation of a time-explicit finite volume solver using CUDA and a CUDA-Aware version of OpenMPI with application to shallow water flows
August 2026 | publication date |
Proposal available till | 20-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Computer Networks and Communications; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
This paper shows the development of a multi-GPU version of a time-explicit finite volume solver for the Shallow-Water Equations (SWE) on a multi-GPU architecture. MPI is combined with CUDA-Fortran in order to use as many GPUs as needed and the METIS library is leveraged to perform a domain decomposition on the 2D unstructured triangular meshes of interest. A CUDA-Aware version of OpenMPI is adopted to speed up the messages between the MPI processes. A study of both speed-up and efficiency is conducted; first, for a classic dam-break flow in a canal, and then for two real domains with complex bathymetries. In both cases, meshes with up to 12 million cells are used.
Keywords:
CUDA; Flood simulations; HPC; MPI; Multi-GPU; Shallow-water equations
Contacts :