#5487. Machine learning-based human-robot interaction in ITS
August 2026 | publication date |
Proposal available till | 20-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Library and Information Sciences;
Media Technology;
Management Science and Operations Research;
Information Systems;
Computer Science Applications; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
In the last few years, intelligent transport systems (ITS) have drawn growing attention, and these applications would have a clear and more comfortable experience for transportation. ITS provides applications with a chance to address the future condition on the route beforehand. The major issues in ITS to accomplish a precise and effective traffic flow prediction system are essential. Therefore, in this paper, a machine learning-assisted intelligent traffic monitoring system (ML-ITMS) has proposed improving transportation protection and reliability to tackle several challenges. The suggested ML-ITMS uses mathematical models to improve the accuracy estimation of traffic flow and nonparametric processes. The Machine Learning-based (ML) method is one of the best-known methods of nonparametric. It requires less prior information about connections between various traffic patterns, minor estimation limitations, and better suitability of nonlinear traffic data features. Human-Robot Interaction (HRI) helps resolve crucial issues concurrently on both the customers and service supplier levels at both ends of the transport system.
Keywords:
Human-computer interaction; Intelligent traffic monitoring system; Intelligent transportation system; Machine learning
Contacts :