#5086. VEDAS: an efficient GPU alternative for store and query of large RDF data sets

July 2026publication date
Proposal available till 17-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Information Systems and Management;
Information Systems;
Computer Networks and Communications;
Hardware and Architecture;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract5086.1 Contract5086.2 Contract5086.3 Contract5086.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Resource Description Framework (RDF) is commonly used as a standard for data interchange on the web. The collection of RDF data sets can form a large graph which consumes time to query. It is known that modern Graphic Processing Units (GPUs) can be employed to execute parallel programs in order to speedup the running time. In this paper, we propose a novel RDF data representation along with the query processing algorithm that is suitable for GPU processing. Our system is designed to strengthen the use of GPU cores and reduce the effect of memory transfer. We propose a representation consists of indices and column-based RDF ID data that can reduce the GPU memory requirement. The indexing and pre-upload filtering techniques are then applied to reduce the data transfer between the host and GPU memory. The experimental results show that our representation is about 35% smaller than the traditional NT format and 40% less compared to that of gStore. The query processing time can be speedup ranging from 1.95 to 397.03 when compared with RDF3X and gStore processing time with WatDiv test suite. It achieves speedup 578.57 and 62.97 for LUBM benchmark when compared to RDF-3X and gStore. The analysis shows the query cases which can gain benefits from our approach.
Keywords:
Graphic Processing Units; Parallel processing; Query processing; Resource Description Framework; SPARQL

Contacts :
0