#4887. Determination of Bayesian optimal warranty length under Type-II unified hybrid censoring scheme
July 2026 | publication date |
Proposal available till | 02-06-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Industrial Relations;
Business and International Management;
Management of Technology and Innovation;
Management Science and Operations Research;
Information Systems and Management; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
More details about the manuscript: Science Citation Index Expanded or/and Social Sciences Citation Index
Abstract:
We consider determination of optimal warranty length for the combined free replacement and pro-rata warranty (FRW-PRW) policy based on the Type-II unified hybrid censored data by Bayesian approach. A non-linear pro-rata rebate cost function is proposed based on which warranty cost is computed. It is assumed that the lifetime follows log normal distribution. The optimal warranty length is obtained by maximizing an expected utility function consisting of three cost functions such as economic benefit function, warranty cost function and dissatisfaction cost function. The expectation is taken with respect to the posterior predictive model for the time-to-failure data. It is observed that the non-linear pro-rata rebate cost function gives a larger warranty length with maximum profit as compared to linear pro-rata rebate cost function. A real-data set is analyzed in order to illustrate the proposed methodology of finding optimal warranty length.
Keywords:
FRW-prw (free replacement and pro-rata warranty) policy; log-normal distribution; optimal warranty length; prior distribution
Contacts :