#4244. Predicting resource availability in local mobile crowd computing using convolutional GRU
September 2026 | publication date |
Proposal available till | 28-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Mathematics
Management |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
More details about the manuscript: Science Citation Index Expanded or/and Social Sciences Citation Index
Abstract:
In mobile crowd computing (MCC), people’s smart mobile devices (SMDs) are utilized as computing resources. Considering the ever-growing computing capabilities of today’s SMDs, a collection of them can offer significantly high-performance computing services. In a local MCC, the SMDs are typically connected to a local Wi-Fi network. Organizations and institutions can leverage the SMDs available within the campus to form local MCCs to cater to their computing needs without any financial and operational burden. Though it offers an economical and sustainable computing solution, users’ mobility poses a serious issue in the QoS of MCC. To address this, before submitting a job to an SMD, we suggest estimating that particular SMD’s availability in the network until the job is finished. For this, we propose a convolutional GRU-based prediction model to assess how long an SMD is likely to be available in the network from any given point of time. To build the prediction model, we presented a novel feature extraction method to be applied to the time-series data.
Keywords:
Ad-hoc cloud; Crowd computing; Deep learning; Mobile cloud; Mobile grid; Resource availability; Resource selection
Contacts :