#10280. Application of an improved vegetation index based on the visible spectrum in the diagnosis of degraded pastures: Implications for development
November 2026 | publication date |
Proposal available till | 25-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Development;
Environmental Science (all);
Soil Science;
Environmental Chemistry; |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
Abstract:
Inadequate pasture management causes land degradation through reduction of grass, increased presence of invasive plants or pests, compaction, erosion, and nutrient deficiency. The recognition of pasture degradation is therefore essential. Remote sensing satellite systems allow us to do so at regional-to global scales. A struggle is in progress nowadays is to improve detection accuracy and implement high-resolution surveys at farm scales using low-cost unmanned aerial vehicles (UAVs). The pasture imagery can be translated into maps of degraded pasture using the popular NDVI as diagnostic parameter, but their generation using a UAV requires a high-cost NIR sensor, while the struggle is to use low-cost UAVs equipped with RGB cameras.
Keywords:
Google Earth engine; NDVI; pasture degradation; remote sensing; total brightness quotient; unmanned aerial vehicles
Contacts :