#6911. Stochastic simulation of the FDA centrifugal blood pump benchmark

January 2027publication date
Proposal available till 30-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Modeling and Simulation;
Mechanical Engineering;
Biotechnology;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract6911.1 Contract6911.2 Contract6911.3 Contract6911.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
In the present study, the effect of physical and operational uncertainties on the hydrodynamic and hemocompatibility characteristics of a centrifugal blood pump designed by the U.S. food and drug administration is investigated. Physical uncertainties include the randomness in the blood density and viscosity, while the operational uncertainties are composed of the pump rotational speed, mass flow rate, and turbulence intensity. The non-intrusive polynomial chaos expansion has been employed to conduct the uncertainty quantification analysis. Additionally, to assess each stochastic parameter’s influence on the quantities of interest, the sensitivity analysis is utilized through the Sobol’ indices. For numerical simulation of the pump’s blood flow, the SST k- ? turbulence model and a power-law model of hemolysis were employed. The pump’s velocity field is profoundly affected by the rotational speed in the bladed regions and the mass flow rate in other zones. Furthermore, the hemolysis index is dominantly sensitive to blood viscosity. According to the results, pump hydraulic characteristics (i.e., head and efficiency) show a more robust behavior than the hemocompatibility characteristics (i.e., hemolysis index) regarding the operational and physical uncertainties. Finally, it was found that the probability distribution function of the hemolysis index covers the experimental measurements.
Keywords:
FDA blood pump; Hemolysis; LVAD; Polynomial Chaos expansion; Power-law hemolysis model; Stochastic condition; Uncertainty quantification

Contacts :
0