#5671. Multimodal modeling of collaborative problem-solving facets in triads
August 2026 | publication date |
Proposal available till | 23-05-2025 |
4 total number of authors per manuscript | 0 $ |
The title of the journal is available only for the authors who have already paid for |
|
|
Journal’s subject area: |
Psychology |
Places in the authors’ list:
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)
More details about the manuscript: Science Citation Index Expanded or/and Social Sciences Citation Index
Abstract:
Collaborative problem-solving (CPS) is ubiquitous in everyday life, including work, family, leisure activities, etc. With collaborations increasingly occurring remotely, next-generation collaborative interfaces could enhance CPS processes and outcomes with dynamic interventions or by generating feedback for after-action reviews. Automatic modeling of CPS processes (called facets here) is a precursor to this goal. Accordingly, we build automated detectors of three critical CPS facets—construction of shared knowledge, negotiation and coordination, and maintaining team function—derived from a validated CPS framework. We used data of 32 triads who collaborated via a commercial videoconferencing software, to solve challenging problems in a visual programming task. We generated transcripts of 11,163 utterances using automatic speech recognition, which were then coded by trained humans for evidence of the three CPS facets. We used both standard and deep sequential learning classifiers to model the human-coded facets from linguistic, task context, facial expressions, and acoustic–prosodic features in a team-independent fashion.
Keywords:
Collaborative problem solving; Educational technology; Language models; Multimodal modelling
Contacts :