#5024. Dual-decoder graph autoencoder for unsupervised graph representation learning

July 2026publication date
Proposal available till 25-05-2025
4 total number of authors per manuscript0 $

The title of the journal is available only for the authors who have already paid for
Journal’s subject area:
Management Information Systems;
Information Systems and Management;
Software;
Artificial Intelligence;
Places in the authors’ list:
place 1place 2place 3place 4
FreeFreeFreeFree
2350 $1200 $1050 $900 $
Contract5024.1 Contract5024.2 Contract5024.3 Contract5024.4
1 place - free (for sale)
2 place - free (for sale)
3 place - free (for sale)
4 place - free (for sale)

Abstract:
Unsupervised graph representation learning is a challenging task that embeds graph data into a low-dimensional space without label guidance. Recently, graph autoencoders have been proven to be an effective way to solve this problem in some attributed networks. However, most existing graph autoencoder-based embedding algorithms only reconstruct the feature maps of nodes or the affinity matrix but do not fully leverage the latent information encoded in the low-dimensional representation. In this study, we propose a dual-decoder graph autoencoder model for attributed graph embedding. The proposed framework embeds the graph topological structure and node attributes into a compact representation, and then the two decoders are trained to reconstruct the node attributes and graph structures simultaneously. The experimental results on clustering and link prediction tasks strongly support the conclusion that the proposed model outperforms the state-of-the-art approaches.
Keywords:
Graph autoencoder; Graph clustering; Graph embedding; Graph neural networks; Graph representation learning

Contacts :
0